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Joint Bayesian estimation of cell 
dependence and gene associations 
in spatially resolved transcriptomic 
data
Arhit Chakrabarti *, Yang Ni  & Bani K. Mallick 

Recent technologies such as spatial transcriptomics, enable the measurement of gene expressions 
at the single-cell level along with the spatial locations of these cells in the tissue. Spatial clustering 
of the cells provides valuable insights into the understanding of the functional organization of the 
tissue. However, most such clustering methods involve some dimension reduction that leads to a loss 
of the inherent dependency structure among genes at any spatial location in the tissue. This destroys 
valuable insights of gene co-expression patterns apart from possibly impacting spatial clustering 
performance. In spatial transcriptomics, the matrix-variate gene expression data, along with 
spatial coordinates of the single cells, provides information on both gene expression dependencies 
and cell spatial dependencies through its row and column covariances. In this work, we propose 
a joint Bayesian approach to simultaneously estimate these gene and spatial cell correlations. 
These estimates provide data summaries for downstream analyses. We illustrate our method with 
simulations and analysis of several real spatial transcriptomic datasets. Our work elucidates gene 
co-expression networks as well as clear spatial clustering patterns of the cells. Furthermore, our 
analysis reveals that downstream spatial-differential analysis may aid in the discovery of unknown cell 
types from known marker genes.
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Single-cell RNA-sequencing technologies have been used to create molecular profiles for individual cells, which 
provide valuable insights into the understanding of the composition of different cell types and their functions 
within a tissue. With newer technologies such as spatial transcriptomics, it is now possible to measure gene 
expressions at the single cell level along with the information of spatial locations of these cells in the tissue. Such 
technologies include the earlier fluorescence in situ hybridization (FISH) based approaches (e.g.,  seqFISH1 and 
 MERFISH2), sequencing-based methods (e.g., 10x  Visium3 and Slide-seq4), and the spatially-resolved transcript 
amplicon readout mapping (STARmap)5;  see6 for a review of different spatial transcriptomic technologies. Spatial 
transcriptomic data bring new scientific questions and statistical challenges to its analysis and interpretation.

Spatial clustering is one of the most common exploratory analyses for spatial transcriptomic data. Spatial 
clustering aims to use spatial transcriptomic information to cluster cells in the tissue into multiple spatial clusters, 
thereby segmenting the entire tissue into multiple tissue structures or domains. This segmentation of the tissue 
structure may aid in the understanding of spatial and functional organization of the tissue. Common spatial 
clustering methods for spatial transcriptomic data include  SpaGCN7, the hidden Markov random field  model8, 
 BayesSpace9,  SpatialPCA10, and SC-MEB11. The majority of the popular spatial clustering methods, first involve 
a dimension reduction step on the expression matrix using some standard technique (e.g., PCA) followed by 
spatial clustering of the estimated low-dimensional embeddings. A more recent approach, DR.SC12 simultane-
ously achieves dimension reduction and spatial clustering, rather than performing them sequentially. However, 
although convenient for computational purposes, dimension reduction techniques often lead to the loss of the 
inherent dependency structure among genes (e.g., co-expression) at any spatial location in the tissue.

In many spatial transcriptomic studies (e.g., STARmap), the expression data are collected on a moderate 
number of genes for a large number of single cells along with their spatial information in the tissue. In such 
cases, it may be of interest to understand the association among the (sub)set of observed genes, along with 
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the spatial clustering of the single cells. The existing spatial clustering methods perform dimension-reduction, 
either prior to clustering or simultaneously and hence, do not have provisions for understanding the genetic 
association. More concretely, the expression data observed for a set of p genes over a relatively large number n 
of single cells, constitute a matrix of expression data. The expression data are also accompanied with the n× d 
spatial co-ordinates of the single cells, where the dimension d = 2 or 3 depends on the profiling method used. 
The matrix-variate spatial transcriptomic data provide information on both gene expression dependencies and 
cell spatial dependencies through the row and column covariances or correlations of the matrix-variate data.

Gaussian  processes13 are commonly used to model spatial data, which typically involve the specification of 
spatial dependence in the form of a covariance matrix/kernel. Existing spatial covariance estimation methods 
ignore the dependency structure among the rows (genes in our case) of the matrix-variate data and often rely 
on a parametric assumption on the covariance kernel. The accuracy of covariance estimation may be sensitive 
to the specification of such kernels.  SpatialDE14,  SPARK15, and BOOST-GP16 adopt Gaussian processes with pre-
specified parametric kernels to identify spatially varying genes. Moreover, genes are considered one-at-a-time 
to identify their spatial expression pattern. This possibly ignores interesting spatial expression patterns induced 
by co-expressing genes. In this paper, we propose a JOint BayeSian (JOBS) approach to simultaneously estimate 
the row and column covariances for the matrix-variate spatial transcriptomic data without fixing a parametric 
column covariance kernel or assuming the rows to be independent. Moreover, the proposed approach is com-
putationally efficient for a large number of spatial locations (i.e., cells).

The proposed method (illustrated schematically in Fig. 1) takes as input the spatial gene expression matrix 
after standard log-normalization and the spatial coordinates of the single cells in the tissue. The JOBS output con-
sists of the joint posterior estimates of both the row and column covariances for the matrix-variate spatial tran-
scriptomic data. These posterior row and column correlation matrices are summaries of gene and cell dependen-
cies, respectively. These outputs may be further processed and used for downstream analyses. For example, the 
estimated cell correlations (column correlation matrix in our case) may be used for jointly predicting the spatial 
distribution of a set of genes in the tissue whereas the estimated gene correlation matrix (corresponds to our row 
correlation matrix) may be used to reveal the gene co-expression patterns. As an illustration, the Figure 2 shows 
the observed and JOBS predicted spatial topology of the gene “SCGB1D2” in the dorsolateral prefrontal cortex 
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Figure 1.  Illustration of our joint Bayesian methodology.
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(DLFPC) of the adult human  brain17. These fitted gene expression data may be considered as a “de-noised” or 
smooth representation of the raw gene expression data and may be used for further downstream analyses. For 
example, the smoothed gene expression data can be used for spatial clustering of the cells in the tissue.

Existing methods of estimating gene co-expression network require the assumption that cell types (cluster 
labels) are either known or can be obtained via some existing spatial clustering  method18. Our joint modeling 
approach circumvents this requirement by simultaneously providing the outputs for cell-type labelling and gene-
network estimation. Our findings indicate that accurate estimation of the spatial correlation matrix is essential 
for achieving accurate cell clustering. Furthermore, we observed that misrepresenting gene correlations, such 
as assuming independence (uncorrelated), significantly impacts the estimation of spatial covariance. Overall, 
this article underscores the importance of precise spatial covariance estimation and highlights the detrimental 
effects of misrepresenting gene correlations. Additionally, our findings provide strong evidence supporting the 
superiority of our joint modeling approach in achieving improved cell clustering. Moreover, we extend our 
method for cells collected from multiple independent tissue samples through a Bayesian hierarchical model, 
which allows for the sharing of information across tissue samples even though the cell spatial locations could 
be different from tissue to tissue.

In this paper, we first performed detailed simulation experiments, comparing the performance of our pro-
posed method with the existing spatial covariance estimation method in Section Simulations. We present an 
analysis of a real spatial transcriptomic dataset collected from the STARmap  platform5 in Section STARmap 
data. In these studies, we demonstrated the effectiveness of our joint modeling approach, which incorporates 
both spatial and genomic level correlations, surpassing existing clustering methods. Additionally, we applied 
JOBS on two different spatial transcriptomics data obtained from the 10x Genomics Visium  platform17,19. We 
discuss our findings and future directions for this work in Section Discussion. Section Discussion. provides a 
brief overview of our proposed joint Bayesian model for the case of a single-sample spatial transcriptomic data, 
and its extension to the case where we have multiple independent samples on a common gene set. The detailed 
description of our methodology, technical details of our hierarchical Bayesian model, and detailed simulation 
results can be found in the Supplementary.

Results
Simulations
The detailed simulation setup and its corresponding results are provided in the Supplementary Section D. We 
performed two sets of simulations to evaluate the performance of JOBS and compared it with a spatial covariance 
estimation approach ignoring the correlations among the genes (rows)20, called NPVecchia. We note that the 
estimated spatial correlation matrix can be used for spatial clustering of the cells in the tissue. Hence, its accu-
rate estimation is essential to achieve precise spatial clustering. It is worthwhile to mention that existing spatial 
clustering methods that rely on PCA for dimension reduction consider these uncorrelated principal components 
for spatial clustering. Apart from destroying the inherent dependence between genes, we conjecture that using 
these uncorrelated principal components can lead to inefficient spatial clustering.
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Figure 2.  Observed and predicted spatial distribution of the gene “SCGB1D2” in the DLFPC dataset.
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In our first set of simulations, we consider the case of a single sample of spatial transcriptomic data. We 
considered a wide range of simulation settings, with different choices of the true spatial covariance and gene 
covariance structures of the matrix-variate data. To monitor the accuracy of estimation of the spatial and gene 
correlation matrices, we compared the KL divergence (in log scale) and the relative Frobenius error. The techni-
cal definitions of KL divergence and relative Frobenius errors are provided in the Supplementary. We further, 
performed independent replications of our simulation experiments and reported the mean and standard devia-
tion of the two metrics over the replications. From these replicated simulations, we found that in situations 
where the genes are correlated, the accuracy of estimation of both the gene and spatial correlation matrices is 
significantly higher for JOBS than under the NPVecchia. Thus, considering genes to be uncorrelated impacts the 
spatial correlation estimation, which in turn might have an effect on spatial clustering. We also note that as the 
number of spatial locations (single cells) increases, the accuracy of estimation of the gene correlations increases 
as can be seen from the corresponding decreasing relative estimation error. We refer the reader to Supplementary 
Section D.1 for the detailed results.

We extended JOBS to the case where there are multiple independent samples of spatial transcriptomic data. 
Specifically, we have independent samples of spatial transcriptomic data measured on the same set of genes over 
possible different spatial locations across samples. In our next set of simulations, we looked at the estimation 
accuracy of the covariance matrices in the presence of multiple independent samples of spatial transcriptomic 
data. For simplicity, we considered three independent samples of spatial data on the same set of genes (p) over 
possibly different spatial locations. The detailed simulation setup and results are presented in Supplementary 
Section D.2. We see that JOBS reports a significantly smaller estimation error of the covariance matrices than that 
from the NPVecchia. Moreover, the estimation error of the spatial covariance matrices decreases as the number 
of genes increases, whereas it shows an increasing trend for the competing method. Besides, as the number 
of spatial locations (single cells in our case) increases, the estimation error of the gene correlations decreases. 
Moreover, the estimation accuracy is higher than the case of a single sample of spatial transcriptomic data, which 
highlights the importance of having multiple samples.

Furthermore, we looked at the scalability of JOBS for increasing number of cells and features/genes through 
multiple independent replications. We note that JOBS scales nearly linearly with the number of cells. Addition-
ally, the simulations show that the runtime is sub-linear with the number of features/genes. The detailed results 
can be found in the Supplementary Section D.3.

We note that although normalization is a standard pre-processing step for spatial transcriptomic data, the log-
normalized matrix-variate data may be far from our assumed matrix normal distribution underneath our JOBS. 
We conducted sensitivity analysis for estimation accuracy, when the underlying data distribution is non-normal. 
In particular, we generated the data from a matrix-variate t distribution and looked at the efficiency of estimation 
for both one-sample and multi-sample case. As before, we considered a variety of number of spatial locations 
and varied the degrees of freedom of the corresponding matrix-variate t distribution. Clearly, from our results 
in Supplementary Section E, we see that the estimation performance under JOBS is better than that obtained 
from NPVecchia. It is worthwhile to note that under the mis-specified model, the estimation performance is 
sub-par in comparison to the case when the underlying data generating model is indeed matrix-variate normal. 
Also, an increase in the degrees of freedom of the matrix-variate t distribution shows an improved estimation 
performance, as such an increase in the degrees of freedom makes the data more “normal”. Furthermore, even 
under the mis-specified model, as the number of independent samples increases, the estimation errors of the 
row correlation matrices decreases, highlighting the importance of multiple samples of spatial transcriptomic 
data. The spatial correlation matrices also show lower estimation errors in comparison to the single-sample case, 
highlighting the benefits of our proposed hierarchical Bayesian model.

STARmap data
We considered the STARmap (spatially-resolved transcript amplicon readout mapping)  dataset5, which consists 
of data from four independent samples/mice. The experimental mice were dark housed for four days and then 
either exposed to light or kept in the dark for another one hour before obtaining measurements from the pri-
mary visual cortex. The data comprised of the expression of 160 genes with the number of cells varying between 
from 931 to 1167 for the four different samples. The spatial locations of these single cells in the tissue were also 
recorded. The STARmap study observed global induction of several known immediate-early genes in the pri-
mary visual cortex due to the light exposure as compared to the mice that were not exposed. This biologically 
interesting observation led us to focus our analysis on the two mice samples that were exposed to light. We refer 
to these as the “light” samples.

Genes that display spatial expression patterns in spatially resolved transcriptomic studies may help character-
ize the spatial transcriptomic landscape of complex tissues. Existing methods like BOOST-GP, SpatialDE, SPARK, 
and SPARK-X21 can identify the spatial expression patterns of genes, commonly referred to as Spatial Expression 
(SE) analysis. SE analysis can help choose the genes that show high spatial variations. However, these methods 
consider one gene at a time to estimate its spatial expression pattern. In many cases, there may exist co-expressing 
genes that induce interesting spatial distribution patterns. This motivated us to consider JOBS on the spatially 
varying genes for the two independent “light” samples. In particular, we selected the top 50 spatially variable 
genes using SPARK-X, implemented in the R package DR.SC22 for each of the two independent light samples 
and considered a common set of genes, which led to 33 spatially varying genes. As a standard pre-processing 
step for spatial transcriptomics data, we removed cells showing extreme expression of genes from each of the 
light samples. The data were subsequently log-normalized with a scaling factor equal to the median expression of 
total reads per cell, following the STARmap study protocol. Thus, the final analysis-ready dataset amounts to the 
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log-normalized expression data for 33 spatially varying genes measured on 927 and 847 single-cells respectively 
for the two light samples.

We ran the proposed JOBS on the processed dataset, which provided us with the posterior estimate of a spatial 
correlation matrix for each sample and the shared gene correlation matrix across samples. We further post-
processed these outputs to extract important features, particular to both the sample-specific and shared data. In 
particular, we obtained the smoothed spatial expression patterns, jointly for the 33 selected genes in each sample. 
The mean correlation and the mean squared error between the smoothed and observed gene expression values 
across the two samples were found to be 0.802 and 0.597 respectively. This indicated the high accuracy of the 
estimation of the spatial cell and gene covariance matrices for the STARmap data. Figure 3 shows the smoothed 
and observed spatial expression patterns for the genes “Egr1” and “Mgp”. Clearly, the smoothed expression pat-
terns are highly aligned with the observed spatial distribution. We considered a Gaussian mixture model (GMM) 
on the smoothed gene expression data to obtain spatial clustering of the cells, choosing the optimal number of 
clusters using the Bayesian Information  Criterion23. We compared the clustering results with two other well-
known spatial clustering methods, namely BayesSpace and DR.SC. To objectively assess the clustering accuracy, 
we used the manually annotated cell types from the original STARmap study. Since excitatory cells formed a rich 
class of distinctly identified neurons, we focused our comparison on the subset of major cell types (eL2/3, eL4, 
eL5, and eL6) constituting excitatory cells. Figure 4 shows the clustering plot for one of the two light samples 
using the three methods. We looked at the Adjusted Rand  Index24 to demonstrate clustering performance of the 
three competing methods, comparing the estimated cluster labels with the manually annotated cells types of 
excitatory cells. The corresponding plot with the true labels as obtained from the STARmap platform is shown in 
Fig. 4d (we looked at the subset of cell types eL2/3, eL4, eL5, and eL6). Furthermore, since BayesSpace requires 
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Figure 3.  Smoothed and observed spatial expression patterns for two genes corresponding to one of the “light” 
samples.
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the specification of the number of clusters, we ran the algorithm for multiple choices of the number of clusters 
and report the one with highest accuracy. Clearly, the clustering obtained from JOBS outperforms the other 
two methods in terms of clustering performance, specifically designed for spatial clustering. This highlights the 
importance of joint modelling of the gene and spatial correlations in spatial transcriptomic data, which possibly 
further enhances spatial clustering.

The boxplot of the expression of the top ten spatially varying genes (obtained from SPARK-X) across the 
different clusters estimated from JOBS in Figure 5 shows interesting distributional pattern. The gene “eRNA3” is 
seen to be almost uniformly distributed across the clusters, with a relatively high expression pattern. This uniform 
spatial distribution of the gene “Egr1” for the “light” sample is also validated by STARmap platform. Interestingly, 
the gene “Bgn” is only significantly expressed in cluster 2. “Bgn” encodes a member of the small leucine-rich 
proteoglycan family of proteins, which plays a role in bone growth, muscle development, and  regeneration25,26. 
The STARmap platform validates most of these cells as smooth muscle cells, which constitute of involuntary, 
non-striated muscle as seen in Figure 4d. This possibly justifies the up-regulation of the gene “Bgn” in the clus-
ter comprising of smooth muscle cells. Our analysis highlights that the joint modeling approach can aid in the 
identification of relevant marker genes by clusters.
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Figure 4.  Spatial clustering from our proposed JOBS compared with the state of the art method as 
implemented by DR.SC R package and the BayesSpace for one of the light samples. The colors indicate the 
estimated clusters. ARI comparing the estimated cluster labels with the manually annotated cells (shown in (d)) 
is reported at the top of each panel.
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Figure 5.  Boxplot of the expression of top ten spatially varying genes by cluster.
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Using the posterior estimates of the spatial correlations, we de-correlated the data and, with graphical 
 LASSO27, estimated the network among the selected genes, shown in Figure 6. The estimated network shows that 
the gene “eRNA3” and “Arx” are hub genes, showing association with multiple genes. Enhancers may be regarded 
as DNA sequences that regulate the gene expression networks. Enhancer RNAs (eRNAs), which are transcribed 
from enhancers in a tissue-specific manner, constitute an important class of non-coding RNAs with a multitude 
of functions involving gene expression  regulation28. The STARmap study considered eRNAs 1 to 5 of the “Fos” 
gene and identified “eRNA3” as the most notable and consistent activity-regulated gene marker, which is also 
highlighted in our estimated network with “eRNA3” being a hub gene. Our estimated network captured this co-
expression network between the genes “eRNA3” and “Fos”. Concurrently, the “Arx” gene provides instructions 
for producing a protein that regulates the activity of other  genes29,30. Dickel et al.31 found that enhancers near 
“Arx” gene regulate its transcription in the mouse brain tissue. This possibly justifies the co-expression pattern 
between the genes “Arx” and “eRNA3” and the genes being hub genes. Furthermore, Figure 7 shows the expres-
sion of the co-expressed genes across the different clusters.

The posterior estimate of the row correlation matrix was used to visualize the correlations among the spa-
tially varying genes in Figure 8. The plot shows positive correlation between “Arx” and “eRNA3”, which is again 
consistent with findings from existing literature. The plot shows high negative correlations of the gene “Egr1” 
with “Arx” and “Prok2”. Further, the estimated network in Fig. 6 shows that “Arx” is connected with “Prok2” 
through the gene “Egr1”. This possibly justifies the expression pattern of these genes in clusters 2 and 6, wherein 
up-regulation of “Arx” down-regulates expression of “Egr1”, which in turn up-regulates “Prok2”. The estimated 
correlations give support to the estimated network in Fig. 6 and the spatial distributional patterns in Fig. 5, 
revealing strong correlations among the co-expressed genes.

In addition to the STARmap data, we considered another two spatial transcriptomic datasets obtained from 
the 10x Genomics Visium platform. In particular, we considered the DLFPC dataset studied  by17 and the human 
breast cancer dataset considered  by19. The detailed description of the datasets and our analyses can be found 
in the Supplementary Section F. The proposed JOBS-based clustering produced a superior or similar spatial 
clustering compared to DR.SC and BayesSpace.

Discussion
We have introduced a joint Bayesian method for the estimation of covariance matrices for matrix-variate spatial 
transcriptomic data wherein both the genes (rows) and cells (columns) of the matrix-variate data are correlated 
by the very design of the study. We have considered the case where we have multiple independent samples of the 
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Figure 7.  Boxplot of the expression of the co-expressed genes by cluster.
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spatial transcriptomic data observed over a possibly different set of spatial locations but a common set of genes. 
We have illustrated the power of our method using both extensive simulations and real data where we made 
comparison with existing methods. The post-processed outputs from our method when used for spatial cluster-
ing shows improved clustering performance over existing methods. As opposed to existing methods, JOBS can 
be used to understand gene co-expression network as well as joint-differential analysis of these genes by clusters.

There are a few possible future directions for this work. First, it may be possible to consider spatial transcrip-
tomic studies with large number of observed genes. The challenge is to define the joint distribution over the 
matrix-variate data, which along with the estimation of covariance matrices would allow for automatic selec-
tion of spatially varying genes from the entire gene set through some Bayesian variable selection criterion. It 
may be also possible to incorporate some Bayesian model-based clustering algorithm for the spatial clustering. 
Currently, we consider a Markov chain Monte Carlo (MCMC) algorithm to estimate the correlation matrices in 
our model. This possibly restricts the applicability of our method to large scale spatial transcriptomic datasets. 
However, it may be possible to consider a variational Bayes approach to estimating the JOBS model parameters, 
which would significantly speed up computational time.

Methods
Joint Covariance estimation for single-sample spatial transcriptomic data
In this section, we briefly present the proposed Bayesian methodology to jointly estimate the covariance matrices 
of a single-sample matrix-variate spatial transcriptomic data. The detailed methodology is presented in the Sup-
plementary Section A.1. Consider an p× n matrix Y  of spatial transcriptomic data where p denotes the number 
of genes and n denotes the number of cells measured at the spatial locations s1, . . . , sn,

Here y(ℓ)i  is the expression of the ℓ th gene in the ith cell at location si . We model Y  as a centered matrix-normal 
distribution,

where � and � are the row and column covariance matrices. These correspond to the gene and spatial covari-
ance matrices for the spatial transcriptomic data. We focus on problems where the number of spatial locations 
n is much larger than the number of genes p. To circumvent computational challenges we consider a sparse 
approximate Cholesky decomposition,

where D = diag(d1, . . . , dn) is a diagonal matrix with positive entries di > 0 , and U is a unit upper triangular 
matrix, i.e., an upper triangular matrix with diagonals equal to one.
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Figure 8.  Heatmap of correlation between the spatially varying genes.
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We consider a maximin  ordering32,33 of the spatial locations s1, . . . , sn , and accordingly the columns of Y  . We 
further consider an ordered conditional independence assumption,

where gm(i) ⊂ {1, . . . , i − 1} is an index vector consisting of the indices of the min(m, i − 1) nearest neighbours 
to si among those ordered previously. The ordered conditional independence in equation (4) implies that U is 
sparse with at most m nonzero off-diagonal elements per column, thereby giving a sparse approximate modified 
Cholesky factorization of �−1.

Bayesian regression model framework
Under the maximin ordering constraint, U and D can be constructed directly by regressing each column yi of Y  
on its  predecessors34. Defining ui = Ugm(i),i as the nonzero off-diagonal entries in the ith column of U , the model 
equation (2) can be written as a series of linear regression models:

where the “design matrix” X i consists of the observations at the m neighboring locations of si , stored in the 
columns of Y  with indices gm(i) . We let mi = |gm(i)| to denote the cardinality of the index set gm(i) . For efficient 
Bayesian inference of the model parameters, we assign conjugate shrinkage priors. For i = 1, . . . , n,

Such conjugate priors lead to closed form updates for these parameters in our posterior sampling algorithm.

Parameterization and inference on the hyperparameters
We reparameterize the priors for ui and di in Eq. (6) in terms of a much smaller number of hyperparameters. 
Inspired by the behavior of Matérn-type covariance functions, we introduce a three-dimensional vector of 
hyperparameters θ = (θ1, θ2, θ3)

⊤ , where θ1 is related to the marginal variance, θ2 is related to the range, and θ3 
is related to the smoothness. The motivation to reparameterize the priors stems from both empirical observa-
tions and theoretical results regarding the Cholesky factors in Eq. (3). To summarize, the hyperparameters of 
the priors in Eq.  (6) are related to θ = (θ1, θ2, θ3)

⊤ as follows. For i = 1, . . . , n,

Here (i) is used to denote the nearest neighbor index. For a fully Bayesian inference, we further assume a flat 
prior for θ . We adopt a Metropolis-Within-Blocked Gibbs approach to efficiently infer the model parameters. 
The details of our posterior inference algorithm are presented in the Supplementary Section A.1.4.

Covariance estimation for spatial transcriptomic data with multiple independent samples
In many cases, we have independent samples of spatial transcriptomic data measured on the same set of genes. 
For example, the experiment may collect spatially resolved single-cell gene expression data for a set of genes 
of interest from a number of experimental units (e.g, different tissue samples). In this section, we extend the 
proposed method to such a case. Although we have independent samples of spatial transcriptomic data, the data 
may be observed over a different set of spatial locations for the different samples (e.g, the observed single cells 
have different spatial locations across the tissue samples). This problem is different from the traditional statistical 
setup of estimation using independent samples and brings in new statistical challenges. Under the assumption 
of the same underlying spatial field, we propose a Bayesian hierarchical model to allow for the borrowing of 
statistical strength across these independent samples.

Specifically, the data from the rth sample Y r is an p× nr matrix, where nr denotes the number of single cells 
observed for the rth sample and p denotes the number of genes. The spatial locations of the single cells sr1, . . . , srnr 
may not align for different samples r, r = 1, . . . ,R . We consider the same maximin ordering of the spatial loca-
tions corresponding to each sample Y r . Then each Y r is modeled independently as a centered matrix-normal 
distribution with a shared row covariance matrix but a sample-specific column covariance matrix,

Similarly as before, we take the modified Cholesky decomposition of the column precision matrix for each 
sample,

(4)p(yi | y1:i−1,�,�) = p(yi | ygm(i),�,�), i = 2, . . . , n,

(5)p(Y | �,�) =

n
∏

i=1

p(yi | ygm(i),�,�) =

n
∏

i=1

Np(yi | X iui , di�),

(6)

ui | di
ind
∼ Nmi (0, diV i),

di
ind
∼ I G (αi ,βi),

�
ind
∼ I W(ν,�).

(7)
αi = 6, βi = 5θ1(1− exp(−θ2(i)

− 1
p ),

V i = Diag(vi1, . . . , vimi ), vij =
exp(−θ3 j)

θ1(1− exp(−θ2(i)
− 1

p ))

, j = 1, . . . ,mi .

Y r
ind
∼ MNp,nr (0,�,�r), r = 1, . . . ,R.

(8)�−1
r = UrD

−1
r U⊤

r .
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Letting Y = {Y1, . . . ,YR} denote the collection of all samples, we have a similar representation of the joint 
distribution of Y  in terms of series of linear regression models as Eq. (5),

where the “design matrix” Xri of the rth sample consists of the observations at the m neighboring locations of sri , 
stored in the columns of Y r with indices gr,m(i) . Similarly, uri = Ur,gr,m,i(i) is the nonzero off-diagonal entries in 
the ith column of Ur , and dri is the ith diagonal element of the diagonal matrix Dr in equation (8). Furthermore, 
we let mri = |gr,m(i)| to denote the cardinality of the index set gr,m(i) . We assume independent priors that are 
conjugate to model Eq. (9), for i = 1, . . . , nr , r = 1, . . . ,R,

Similarly to Section Parameterization and inference on the hyperparameters, we reparameterize the priors for uri 
and dri in terms of a shared vector of hyperparameters θ = (θ1, θ2, θ3)

⊤ . These hyperparameters are random (i.e., 
they have prior distributions) and not sample-dependent, and hence they allow for the sharing of the information 
across samples. This completes the specification of our Bayesian hierarchical model. We refer the reader to the 
Supplementary Section A.2 for a detailed description of the proposed model and posterior inference algorithm 
for multiple samples of spatial transcriptomic data.

Data, materials, and software availability
The STARmap data used in this work are publicly available from the website https://lce.biohpc.swmed.edu/
star/index.html. The datasets from the 10x Visium are accessible on the 10x Genomics website at https://
support.10xgenomics.com/spatial-gene-expression/datasets. The codes used for the analysis can be found in 
the repository https://github.com/Arhit-Chakrabarti/JOBS.

Received: 21 December 2023; Accepted: 17 April 2024

References
 1. Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the 

mouse hippocampus. Neuron 92, 342–357. https:// doi. org/ 10. 1016/j. neuron. 2016. 10. 001 (2016).
 2. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single 

cells. Science 348, aaa6090. https:// doi. org/ 10. 1126/ scien ce. aaa60 90 (2015).
 3. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82. 

https:// doi. org/ 10. 1126/ scien ce. aaf24 03 (2016).
 4. Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 

363, 1463–1467. https:// doi. org/ 10. 1126/ scien ce. aaw12 19 (2019).
 5. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691. https:// doi. 

org/ 10. 1126/ scien ce. aat56 91 (2018).
 6. Lee, J., Yoo, M. & Choi, J. Recent advances in spatially resolved transcriptomics: Challenges and opportunities. BMB Rep.https:// 

doi. org/ 10. 5483/ BMBRep. 2022. 55.3. 014 (2022).
 7. Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable 

genes by graph convolutional network. Nat. Methods 18, 1342–1351. https:// doi. org/ 10. 1038/ s41592- 021- 01255-8 (2021).
 8. Dries, R. et al. Giotto: A toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78. https:// 

doi. org/ 10. 1186/ s13059- 021- 02286-2 (2021).
 9. Zhao, E. et al. Spatial transcriptomics at subspot resolution with bayesspace. Nat. Biotechnol. 39, 1375–1384. https:// doi. org/ 10. 

1038/ s41587- 021- 00935-2 (2021).
 10. Shang, L. & Zhou, X. Spatially aware dimension reduction for spatial transcriptomics. Nat. Commun. 13, 7203. https:// doi. org/ 10. 

1038/ s41467- 022- 34879-1 (2022).
 11. Yang, Y. et al. SC-MEB: spatial clustering with hidden Markov random field using empirical Bayes. Brief. Bioinform.https:// doi. 

org/ 10. 1093/ bib/ bbab4 66 (2021).
 12. Liu, W. et al. Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data. Nucleic 

Acids Res. 50, e72–e72. https:// doi. org/ 10. 1093/ nar/ gkac2 19 (2022).
 13. Williams, C. K. & Rasmussen, C. E. Gaussian processes for machine learning Vol. 2 (MIT Press, Cambridge, 2006).
 14. Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: Identification of spatially variable genes. Nat. Methods 15, 343–346. https:// 

doi. org/ 10. 1038/ nmeth. 4636 (2018).
 15. Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat. 

Methods 17, 193–200. https:// doi. org/ 10. 1038/ s41592- 019- 0701-7 (2020).
 16. Li, Q., Zhang, M., Xie, Y. & Xiao, G. Bayesian modeling of spatial molecular profiling data via Gaussian process. Bioinformatics 

37, 4129–4136. https:// doi. org/ 10. 1093/ bioin forma tics/ btab4 55 (2021).
 17. Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24, 

425–436 (2021).
 18. Yu, J. & Luo, X. Recovering spatially-varying cell-specific gene co-expression networks for single-cell spatial expression data. Front. 

Genet.https:// doi. org/ 10. 3389/ fgene. 2021. 656637 (2021).
 19. Jiang, X. et al. Integrating image and molecular profiles for spatial transcriptomics analysis. bioRxivhttps:// doi. org/ 10. 1101/ 2023. 

06. 18. 545488 (2023).
 20. Kidd, B. & Katzfuss, M. Bayesian nonstationary and nonparametric covariance estimation for large spatial data (with discussion). 

Bayesian Anal. 17, 291–351. https:// doi. org/ 10. 1214/ 21- BA1273 (2022).

(9)p(Y | �, {�1, . . . ,�R}) =

R
∏

r=1

nr
∏

i=1

p(yri | yrgr,m(i),�,�r) =

R
∏

r=1

nr
∏

i=1

Np(yri | Xriuri , dri�),

(10)

uri | dri
ind
∼ Nmri (0, driV ri),

dri
ind
∼ I G (αri ,βri),

�
ind
∼ I W(ν,�).

https://doi.org/10.1016/j.neuron.2016.10.001
https://doi.org/10.1126/science.aaa6090
https://doi.org/10.1126/science.aaf2403
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1126/science.aat5691
https://doi.org/10.1126/science.aat5691
https://doi.org/10.5483/BMBRep.2022.55.3.014
https://doi.org/10.5483/BMBRep.2022.55.3.014
https://doi.org/10.1038/s41592-021-01255-8
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1038/s41587-021-00935-2
https://doi.org/10.1038/s41587-021-00935-2
https://doi.org/10.1038/s41467-022-34879-1
https://doi.org/10.1038/s41467-022-34879-1
https://doi.org/10.1093/bib/bbab466
https://doi.org/10.1093/bib/bbab466
https://doi.org/10.1093/nar/gkac219
https://doi.org/10.1038/nmeth.4636
https://doi.org/10.1038/nmeth.4636
https://doi.org/10.1038/s41592-019-0701-7
https://doi.org/10.1093/bioinformatics/btab455
https://doi.org/10.3389/fgene.2021.656637
https://doi.org/10.1101/2023.06.18.545488
https://doi.org/10.1101/2023.06.18.545488
https://doi.org/10.1214/21-BA1273


12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9516  | https://doi.org/10.1038/s41598-024-60002-z

www.nature.com/scientificreports/

 21. Zhu, J., Sun, S. & Zhou, X. Spark-x: non-parametric modeling enables scalable and robust detection of spatial expression patterns 
for large spatial transcriptomic studies. Genome Biol. 22, 184. https:// doi. org/ 10. 1186/ s13059- 021- 02404-0 (2021).

 22. Liu, W., Yang, Y., & Liu, J. DR.SC: Joint Dimension Reduction and Spatial Clustering (2022). R package version 3.0.
 23. Neath, A. A. & Cavanaugh, J. E. The bayesian information criterion: Background, derivation, and applications. WIREs Comput. 

Stat. 4, 199–203. https:// doi. org/ 10. 1002/ wics. 199 (2012).
 24. Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2, 193–218. https:// doi. org/ 10. 1007/ BF019 08075 (1985).
 25. Fisher, L. W. et al. Human biglycan gene. Putative promoter, intron-exon junctions, and chromosomal localization. J. Biol. Chem. 

266, 14371–14377. https:// doi. org/ 10. 1016/j. cell. 2017. 12. 017 (1991).
 26. Didangelos, A. et al. Proteomics characterization of extracellular space components in the human aorta. Mole. Cell. Proteom. 9, 

2048–2062. https:// doi. org/ 10. 1074/ mcp. M110. 001693 (2010).
 27. Friedman, J., Hastie, T. & Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432–441. 

https:// doi. org/ 10. 1093/ biost atist ics/ kxm045 (2007).
 28. Sartorelli, V. & Lauberth, S. M. Enhancer rnas are an important regulatory layer of the epigenome. Nat. Struct. Mol. Biol. 27, 

521–528. https:// doi. org/ 10. 1038/ s41594- 020- 0446-0 (2020).
 29. Ohira, R. et al. Human arx gene: Genomic characterization and expression. Mol. Genet. Metab. 77, 179–188. https:// doi. org/ 10. 

1016/ S1096- 7192(02) 00126-9 (2002).
 30. Gécz, J., Cloosterman, D. & Partington, M. Arx: A gene for all seasons. Curr. Opin. Genet. Dev. 16, 308–316. https:// doi. org/ 10. 

1016/j. gde. 2006. 04. 003 (2006).
 31. Dickel, D. E. et al. Ultraconserved enhancers are required for normal development. Cell 172, 491–499. https:// doi. org/ 10. 1016/j. 

cell. 2017. 12. 017 (2018).
 32. Guinness, J. Permutation and grouping methods for sharpening Gaussian process approximations. Technometrics 60, 415–429. 

https:// doi. org/ 10. 1080/ 00401 706. 2018. 14374 76 (2018).
 33. Schäfer, F., Sullivan, T. J. & Owhadi, H. Compression, inversion, and approximate PCA of dense kernel matrices at near-linear 

computational complexity. Multiscale Model. Simul. 19, 688–730. https:// doi. org/ 10. 1137/ 19M12 9526X (2021).
 34. Huang, J. Z., Liu, N., Pourahmadi, M. & Liu, L. Covariance matrix selection and estimation via penalised normal likelihood. 

Biometrika 93, 85–98. https:// doi. org/ 10. 1093/ biomet/ 93.1. 85 (2006).

Acknowledgements
This research was partially supported by the grants CPRIT RP23024, NIH 1R01GM148974-01, NSF DMS-
2112943, and NSF CCF-1934904.

Author contributions
A.C., Y.N., and B.K.M. conceived the experiment. A.C. conducted the experiment and analysed the results. All 
authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 60002-z.

Correspondence and requests for materials should be addressed to A.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1186/s13059-021-02404-0
https://doi.org/10.1002/wics.199
https://doi.org/10.1007/BF01908075
https://doi.org/10.1016/j.cell.2017.12.017
https://doi.org/10.1074/mcp.M110.001693
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1038/s41594-020-0446-0
https://doi.org/10.1016/S1096-7192(02)00126-9
https://doi.org/10.1016/S1096-7192(02)00126-9
https://doi.org/10.1016/j.gde.2006.04.003
https://doi.org/10.1016/j.gde.2006.04.003
https://doi.org/10.1016/j.cell.2017.12.017
https://doi.org/10.1016/j.cell.2017.12.017
https://doi.org/10.1080/00401706.2018.1437476
https://doi.org/10.1137/19M129526X
https://doi.org/10.1093/biomet/93.1.85
https://doi.org/10.1038/s41598-024-60002-z
https://doi.org/10.1038/s41598-024-60002-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Joint Bayesian estimation of cell dependence and gene associations in spatially resolved transcriptomic data
	Results
	Simulations
	STARmap data

	Discussion
	Methods
	Joint Covariance estimation for single-sample spatial transcriptomic data
	Bayesian regression model framework
	Parameterization and inference on the hyperparameters

	Covariance estimation for spatial transcriptomic data with multiple independent samples

	References
	Acknowledgements


